
A Round-Efficient Distributed Betweenness Centrality
Algorithm

Loc Hoang
The University of Texas at Austin

loc@cs.utexas.edu

Matteo Pontecorvi
Nokia Bell Labs

matteo.pontecorvi@nokia.com

Roshan Dathathri
The University of Texas at Austin

roshan@cs.utexas.edu

Gurbinder Gill
The University of Texas at Austin

gill@cs.utexas.edu

Bozhi You
Xi’an Jiaotong University

youbozhi@stu.xjtu.edu.cn

Keshav Pingali
The University of Texas at Austin

pingali@cs.utexas.edu

Vijaya Ramachandran
The University of Texas at Austin

vlr@cs.utexas.edu

Abstract
We present Min-Rounds BC (MRBC), a distributed-memory
algorithm in the CONGEST model that computes the be-
tweenness centrality (BC) of every vertex in a directed un-
weighted n-node graph in O (n) rounds. Min-Rounds BC also
computes all-pairs-shortest-paths (APSP) in such graphs. It
improves the number of rounds by at least a constant factor
over previous results for unweighted directed APSP and for
unweighted BC, both directed and undirected.

We implemented MRBC in D-Galois, a state-of-the-art
distributed graph analytics system, incorporated additional
optimizations enabled by the D-Galois model, and evaluated
its performance on a production cluster with up to 256 hosts
using power-law and road networks. Compared to the BC
algorithm of Brandes, on average, MRBC reduces the number
of rounds by 14.0× and the communication time by 2.8× for
the graphs in our test suite. As a result, MRBC is 2.1× faster
on average than Brandes BC for real-world web-crawls on
256 hosts.

CCS Concepts • Theory of computation→ Shortest paths;
Massively parallel algorithms; Distributed algorithms.

ACM Reference Format:
Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill,
Bozhi You, Keshav Pingali, and Vijaya Ramachandran. 2019. A
Round-Efficient Distributed Betweenness Centrality Algorithm. In
24th ACM SIGPLAN Symposium on Principles and Practice of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’19, February 16–20, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6225-2/19/02. . . $15.00
https://doi.org/10.1145/3293883.3295729

Parallel Programming (PPoPP ’19), February 16–20, 2019, Wash-
ington, DC, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3293883.3295729

1 Introduction
Centrality metrics are useful for analyzing network structure
since they capture the relative importance of individual ver-
tices in the network. In this paper, we focus on Betweenness
Centrality (BC) [22], a metric based on the computation of
shortest paths between vertices in the network graph. Intu-
itively, BC measures the degree of control a vertex has over
communication between vertices in the network. IfG = (V ,E)
is a graph and s, t are a pair of vertices, the betweenness score
of a vertex v for this vertex pair is the fraction of shortest
paths between s and t that include v. The BC of v is the sum
of its betweenness scores for all pairs of vertices in the graph.

BC has been used to find key actors in terrorist networks [15,
36], study the spread of sexual diseases [17, 33, 41], and ana-
lyze power grid component failures [34]. In most applications,
the networks are unweighted, directed graphs with billions of
vertices and edges [44], so we focus on such graphs.

Most implementations of BC [7, 18, 19, 26, 28, 43, 52,
56, 57, 61] use a standard implementation of the Brandes
BC algorithm [13] (Section 2) and perform breadth first
search from each vertex to compute shortest paths. Solomonik
et al. [53] implement a sparse-matrix based BC algorithm
called Maximal-Frontier BC that uses the Bellman-Ford al-
gorithm [53] to compute shortest paths from each vertex.
We present a new distributed-memory algorithm called Min-
Rounds BC (MRBC) formulated in the CONGEST model
(Section 2) [21, 25, 37, 42, 45, 47, 49] that computes the
BC of every vertex in an unweighted, directed graph based
on a solution to the all-pairs-shortest-paths (APSP) problem
in such graphs. For an unweighted, directed graph with n
vertices and m edges, it executes 2n + O (D) rounds, where
D is the (finite) directed diameter, and sends no more than
2mn + 2m messages in the CONGEST model.

272

https://doi.org/10.1145/3293883.3295729
https://doi.org/10.1145/3293883.3295729
https://doi.org/10.1145/3293883.3295729
https://www.acm.org/publications/policies/artifact-review-badging/#replicated
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#reusable


PPoPP ’19, February 16–20, 2019, Washington, DC, USA Hoang, Pontecorvi, Dathathri, Gill, You, et al.

To evaluate MRBC, we implement it in D-Galois, the state-
of-the-art distributed graph analytics system created using the
Gluon communication substrate [16], and establish an opti-
mization of MRBC in this system to reduce communication
volume. We compare the performance of MRBC with that of
other BC algorithms on power-law and road networks using a
large production cluster. Compared to the classical Brandes
BC algorithm, MRBC reduces the number of executed rounds
by 14.0× and the communication time by 2.8× on average in
our evaluation. Since the execution time of graph algorithms
on distributed-memory is dominated by communication time,
MRBC is faster than other BC algorithms in our evaluation
for non-trivial diameter graphs even though it may perform
more computation. On average, MRBC is 3.0× faster than
Maximal-Frontier BC [53], and for real-world web-crawls on
256 hosts, MRBC is 2.1× faster than Brandes BC.

Our paper makes the following contributions:

• We present a new distributed betweenness centrality
algorithm called Min-Rounds BC in the CONGEST
model that is provably round efficient compared to past
betweenness centrality algorithms (Section 3).
• We implement Min-Rounds BC in the state-of-the-

art distributed graph analytics system, D-Galois, and
present an optimization that exploits algorithmic prop-
erties to optimize communication (Section 4).
• We evaluate our implementation against Brandes BC [13]

and Maximal-Frontier BC [53] on a large production
cluster and show that it outperforms these algorithms
on real-world graphs at scale (Section 5).

2 Background
Let G = (V ,E) be a directed graph. For a vertex u ∈ V we
define Γin (u) = {v ∈ V | (v,u) ∈ E} as the set of incoming
neighbors of u and Γout (u) = {v ∈ V | (u,v ) ∈ E} as the set of
the outgoing neighbors of u. A directed graph G is strongly
connected if every vertex is reachable from every other vertex.
The diameter of a graph is the largest distance between any
pair of vertices. We letUG denote the undirected version of G.
A directed graph G is weakly connected if UG is connected.
We let δ (x ,y) denote the shortest path distance from x to y,
with δ (x ,y) = ∞ if there is no path.

Betweenness Centrality. Let G = (V ,E) be a directed graph
with |V | = n, |E | =m, and with a positive edge weight w(e )
on each edge e ∈ E. Let σxy denote the number of shortest
paths (SPs) from x to y in G, and σxy (v ) the number of SPs
from x to y in G that pass through v, for each pair x ,y ∈ V .
Then, BC (v ) =

∑
s,v,t,v

σst (v )
σst

.

2.1 Brandes’ Betweenness Centrality Algorithm
Brandes [13] noted that if single source shortest path (SSSP)
DAGs are available for each v ∈ V we can compute BC
values with a recursive accumulation technique.

Algorithm 1 Betweenness-centrality(G = (V ,E)) ([13])
1: for every v ∈ V do BC(v ) ← 0
2: for every s ∈ V do
3: run Dijkstra SSSP from s (or BFS if G is unweighted)
4: ∀ t ∈ V\{s}. compute σst and Ps (t )
5: store vertices in stack S in non-increasing distance from s
6: accumulate dependency δs• (t ) of s on all t ∈ V \ s using Algo-

rithm 2

Algorithm 2 Accumulation-phase(s, S) ([13])
Require: ∀t ∈ V : σst , Ps (t ); a stack S containing all v ∈ V in non-

increasing distance d (s, v ) value
1: for every v ∈ V do δs• (v ) ← 0
2: while S , ∅ do
3: w ← pop(S )
4: for v ∈ Ps (w ) do δs• (v ) ← δs• (v ) +

σsv
σsw · (1 + δs• (w ))

5: if w , s then BC(w ) ← BC(w ) + δs• (w )

BC (v ) =
∑
s,v

δs• (v ) where δs• (v ) =
∑

t ∈V \{v,s }

σsv · σvt
σst

Moreover, δs• (v ) can be recursively computed as δs• (v ) =∑
w :v ∈Ps (w )

σsv
σsw
· (1 + δs• (w )), where Ps (w ) is the set of pre-

decessors of w in the SSSP DAG rooted at s.
Brandes’ sequential BC algorithm consists of the following

steps: for each source s compute the SSSP DAG rooted at
s, DAG (s ) (Alg. 1), for each DAG (s ) compute σsv for each
v ∈ DAG (s ) (Alg. 1) and, for each DAG (s ) starting from the
leaves, apply the recursive equation for δs• (given above) up
to the root (Alg. 2).

2.2 CONGEST Model
In the CONGEST model, a network of processors is generally
modeled by an undirected graphG = (V ,E), with |V | = n and
|E | = m. Each vertex has infinite computational power. We
assume the vertices are numbered from 1 to n and we denote
the vertex i by vi . If the graph G = (V ,E) is directed then it
is assumed that the communication channels (edges in G) are
bidirectional, i.e., the communication network is represented
by UG .

The performance of an algorithm is measured by the num-
ber of rounds it needs. In a single round a vertex v ∈ V can
receive an O (logn)-bit message along each incoming edge
(u,v ). Vertex v processes its received messages (instanta-
neously, given its infinite computational power) and then can
send a (possibly different) O (logn)-bit message along each
outgoing edge; v can choose not to send a message along
some of its edges in a given round. The goal is to design
distributed algorithms for the graph G using a small number
of rounds. Additionally, we would like the total number of
messages sent across all edges in all rounds to be small.

In the next section, we present the first nontrivial distributed
algorithm for BC in unweighted directed graphs. At the same

273



A Round-Efficient Distributed Betweenness Centrality ... PPoPP ’19, February 16–20, 2019, Washington, DC, USA

time we also improve the round and/or message complex-
ity (by a constant factor) for APSP in both undirected and
directed graphs and for BC in undirected graphs. Prior to
our work, the best previous CONGEST algorithms for un-
weighted APSP were in [38] and the only nontrivial CON-
GEST algorithm for BC was the undirected unweighted BC
algorithm in [31].

3 Min-Rounds BC
In this section, we present our new algorithm for computing
betweenness centrality in unweighted directed graphs. It is
inspired by the Lenzen-Peleg distributed unweighted APSP
algorithm [38], which was presented as an APSP algorithm
for unweighted undirected graphs, but whose 2n-round ver-
sion also works for directed graphs. Our APSP algorithm
contains new elements discussed starting Section 3.1 up to
Section 3.4. Section 3.5 gives our distributed algorithm for
the accumulation phase (Alg. 2) in Brandes’ algorithm and
our overall BC algorithm.

3.1 Our Contributions
Theorem 1 states our main results. We use D to denote the
diameter of a directed graph, and Du for an undirected graph.
Lemma 8 in Section 3.5 states a version of this theorem that
applies to the implementation in our experiments.

Theorem 1. On an unweighted graph G with n nodes and m
edges,
(I) Algorithm 3 computes directed APSP with the following
bounds in the CONGEST model:

1. If n is known, in min{n +O (D), 2n} rounds while send-
ingmn +O (m) messages in any graph.

2. If n is known, in 2n rounds while sending at most mn
messages in any graph (by omitting Steps 1 and 10).

3. If n is not known, in n +O (D) rounds while sending at
mostmn +O (m) messages if G is strongly connected.

(II) Algorithm 5 computes BC values of all vertices with at
most twice the number of rounds and messages as in part (I)
for each of the three cases.
(III) If G is undirected the bounds for rounds and messages
in parts (I) and (II) hold with D replaced by Du .

Parts I.1 and I.3 of Theorem 1 improve over the 2n-round
algorithm in [38] while sending a smaller number of messages.
The number of messages sent is also improved for undirected
graphs when compared to [38], where up to 2mn messages
ormn +O (m · Du ) messages can be sent. Moreover, part I.3
of Theorem 1 computes APSP without knowing n when D is
bounded: this case is not considered in [38] where knowledge
of n is needed for directed APSP. For message count, Part I.2
of Theorem 1 further reduces the number of messages to at
most one message sent by each node for each source.

In the case when exponential numbers of shortest paths
exist in the graph, we can use the approximation technique in-
troduced in [31] which uses only O (logn)-size messages and
computes a provably good approximation of the BC values.

Undirected versus Directed APSP (and BC). As noted ear-
lier, the APSP algorithm in [38] is a correct 2n-round al-
gorithm for unweighted directed graphs even though it was
presented as an undirected APSP algorithm. By using the
height of a BFS-tree as a 2-approximation of Du , an alter-
nate n + O (Du )-round bound is obtained in [38] for APSP
in an undirected connected graph. However, this result does
not hold for directed BFS and directed diameter. Instead, our
Algorithm 4 uses a different method to achieve an n +O (D)-
round bound for directed strongly-connected graphs.

There are otherO (n)-round undirected APSP algorithms [29,
48] but these require bidirectional edges and do not work for
directed graphs (for example, the use of distances along a peb-
ble traversal of a BFS tree in the proof of Lemma 1 in [29]).
Similarly, the undirected BC algorithm in [31] does not work
for directed graphs even if we substitute a directed APSP
algorithm since their method for the accumulation phase is
tied to the undirected APSP method in [29].

New Techniques. We introduce the following new pipelining
methods for the CONGEST model.

(i) A simple timestamp pipelining technique based on re-
versing global delays that occur during a forward execution
of a distributed algorithm. This general method is applicable
when certain specific operations have to be back-propagated
during a reverse pass of the algorithm. We use this technique
in the Accumulation Phase for the BC scores following an
APSP computation (Section 3.5).

(ii) A refinement of the pipelining technique in [38] to
obtain a simpler APSP algorithm for unweighted directed
graphs that is faster and more message-efficient (by a constant
factor) (Theorem 1 and Sections 3.3-3.5).

Additional details on the above techniques, and a novel
O (n)-round APSP algorithm for weighted directed acyclic
graphs can be found in [50]. Recently, new deterministic
algorithms for weighted APSP [4] were obtained by building
on these pipelining techniques.

3.2 The Lenzen-Peleg APSP Algorithm [38]
We first review some notation common to [38] and our Alg. 3
for directed APSP. Lv is an ordered list at vertex v which
stores pairs (dsv , s ), where s is a source and dsv is the current
estimate on the shortest distance from s to v. These pairs
are stored in lexicographically sorted order, with (drv , r ) <
(dsv , s ) if either drv < dsv , or drv = dsv and r < s. Lrv
denotes the state of Lv at the beginning of round r .

In each round r of the Lenzen-Peleg algorithm [38], each
vertex v sends along its outgoing edges the pair with smallest
index in Lrv whose status (a conditional flag) is set to ready;
v then sets the status of this pair to sent . As noted in [38] this

274



PPoPP ’19, February 16–20, 2019, Washington, DC, USA Hoang, Pontecorvi, Dathathri, Gill, You, et al.

Algorithm 3 Directed-APSP(G )

1: compute (in parallel with Step 7) a BFS tree B rooted at vertex v1 (node with smallest ID); each vertex u computes its set of children Cu and its parent pu
in B ▷ This will be used in Alg. 4

2: for each vertex v in G do
3: Lv ← ((0, v )); set flag fv ← 0 ▷ Initialize
4: for each source s in G do if s = v then σvv ← 1 else σsv ← 0; Ps (v ) ← ∅
5: if n is not known then ▷ Assumes G is weakly-connected
6: compute and broadcast n to every node in at most 2 · Du rounds, where Du is the diameter of UG
7: for rounds 1 ≤ r ≤ 2n do ▷ Step 10 could cause termination before round 2n when G is strongly connected
8: if r = dsv + ℓrv (dsv , s ) then
9: τsv ← r ; send (dsv , s, σsv ) to all vertices in Γout (v ) ▷ Timestamp τsv will be used in Alg. 5

10: run APSP-Finalizer(v, pv , Cv , n) ▷ See Alg. 4
11: for a received (dsu, s, σsu ) from an incoming neighbor u do
12: if ∄ (dsv , s ) ∈ Lrv then
13: vertex v adds (dsv , s ) in Lv with dsv = dsu + 1, sets σsv ← σsu ; Ps (v ) ← {u }
14: else if ∃ (dsv , s ) ∈ Lrv with dsv = dsu + 1 then
15: vertex v updates σsv ← σsv + σsu ; Ps (v ) ← Ps (v ) ∪ {u }
16: else if ∃ (dsv , s ) ∈ Lrv with dsv > dsu + 1 then
17: vertex v replaces (dsv , s ) in Lv with (dsu + 1, s ); vertex v sets σsv ← σsu ; Ps (v ) ← {u }

approach can result in multiple messages being sent from v
for the same source s (in different rounds). This is simplified
in our algorithm, where only one correct message is sent
from each vertex v for each source. This message is sent in a
specific round without the need for a status flag.

The Lenzen-Peleg algorithm [38] completes in n +O (Du )
rounds and correctly computes shortest path distances to v
from each vertex s that has a path to v (the undirected di-
ameter, which we denote by Du here, is called D in [38]
because they only consider undirected graphs). Although this
is claimed in [38] only for undirected APSP, their techniques
can be adjusted to work for directed APSP as well. In particu-
lar, if the total number of vertices n is known (or computed),
the undirected APSP algorithm in [38] can be modified to
terminate in 2n rounds and compute APSP in a directed graph.

In Section 3.3 we present a method to improve the num-
ber of rounds from 2n to min{2n,n +O (D)}. Our algorithm
terminates in n + 5D rounds on strongly connected graphs
without knowing n; if n is known, it terminates in 2n rounds in
any directed graph. Moreover, our algorithm reduces the total
number of messages sent to mn + 2m even for the undirected
case. Finally, since we are interested in computing BC, our
APSP algorithm also computes for each vertexv the set Ps (v )
of predecessors of v in the shortest path DAG rooted at each
source s, and the number of shortest paths σsv from s to v.
These enhancements appear in our new Algorithm 3, together
with a call to Algorithm 4 to reduce the number of rounds to
n +O (D) (when D is finite). We use the output of Algorithm
3 to compute directed BC in Section 3.5.

3.3 APSP and Number of Shortest Paths
In our directed APSP algorithm (Alg. 3) initially each vertex
v has just the pair (0,v ) in Lv (Step 3, Alg. 3). Let Lrv be the
state of Lv at the beginning of round r , and let ℓ (r )v (dsv , s )
be the index of the pair (dsv , s ) in Lrv . If there is an entry

on Lv with dsv + ℓ
r
v (dsv , s ) = r (and there can be at most

one), then this value is sent out along with the associated σsv
value (Steps 8-9), otherwise v does not send out anything in
round r . A received message for source s is either added to
Lv or updates an existing value for s in Lv (if it improves the
distance value for its source). If new shortest paths from s
to v are added by this received message, the σsv value and
Ps (v ) are updated to reflect this (Steps 11-17). Steps 1 and 10
are used to reduce the number of rounds from 2n to n +O (D)
and are discussed in Section 3.4.

Algorithm 3 may need to send more than one value from
a vertex v in a round because of the parallel computation of
Step 1, but it never sends more than a constant number of
values. In this case, v will combine all these values into a
single O (B)-bit message.

We now establish the correctness of Algorithm 3. We start
by showing that every dsv value arrives at v before the round
in which it will need to be sent by v in Step 8.

Lemma 2. If an entry (dsv , s ) is inserted in Lv at position k
in round r then dsv + k > r .

Proof. We prove the lemma by contradiction. Assume the
lemma does not hold and consider the first round in which
it is violated. In the first round, any entry (dsv , s ) inserted
in Lv has dsv = 1 and the minimum value for k is 1. Hence
dsv + k ≥ 2 > 1 so the lemma must hold for round 1. Now,
let r > 1 be the first round in which the lemma does not
hold and an entry (dsv , s ) is inserted in Lv at a position k
with dsv + k ≤ r . Let this dsv be inserted due to a message
(dsu , s,σsu ) received by v in round r in Step 11. Then, if
(dsu ,u) was in position i in Lu in round r , r = dsu + i and the
entries in Lu in positions 1 to i − 1 must have been sent to v
in rounds earlier than r . Each of these entries correspond to
a different source, and a corresponding entry for that source
will be present at a position less than k in Lv (either because
a corresponding entry was inserted at Lv when the message

275



A Round-Efficient Distributed Betweenness Centrality ... PPoPP ’19, February 16–20, 2019, Washington, DC, USA

for it from u was received or an entry with an even smaller
value for dsv was already present in Lv ). Hence k ≥ i. But
for the values in round r , dsv + k = dsu + 1 + k ≥ dsu + i + 1
since dsv = dsu + 1 and k ≥ i in round r . Since r = dsu + i
we have dsv + k ≥ r + 1. This gives the desired contradiction,
and the lemma is established. □

Next we show that the position of an entry for a source s in
Lv can never decrease unless its value is changed.

Lemma 3. If an entry (dsv , s ) in Lv remains unchanged at
v between rounds r and r ′, with r ′ > r , then ℓ (r

′)
v (dsv , s ) ≥

ℓ
(r )
v (dsv , s ).

Proof. Once an entry is added to the list Lv it can only be re-
placed by a lexicographic smaller one, but it never disappears.
Thus, every entry in Lv that is below (dsv , s ) in round r either
remains in its position or moves to an even lower position in
subsequent rounds. Hence if dsv does not change between r
and r ′, every entry below (dsv , s ) in round r remains below it
until round r ′. It is possible that new entries could be added
below the position of (dsv , s ) in Lv , but this can only increase
the position of (dsv , s ) in round r ′. □

Lemma 4. At each vertex v, the distance values in the se-
quence of messages sent by v are non-decreasing.

Proof. Suppose v sends a message with value dsv in round
r and then sends a message with a smaller d value in a later
round. Then this smaller d value must be received by v in
round r or later since otherwise it would have been placed in
Lv (and thus sent) before dsv .

Let k = ℓrv (dsv , s ). Let ds ′v be the first d value smaller than
dsv that is inserted in Lv in a round r ′ ≥ r . Then, ds ′v is
inserted in a position k ′ ≤ k since the d values are in non-
decreasing order on Lv . But then ds ′v +k ′ < dsv +k = r ≤ r ′.
But this contradicts Lemma 2. □

Lemmas 2 and 3 establish that every entry that remains in
Lv at the end of the algorithm was sent out at a prescribed
round number (Step 9, Alg. 3) since the entry was placed at its
assigned spot before that round number is reached and after
it was placed in Lv its position can only increase, and hence
it will be available to be sent out at the round corresponding
to its new higher position. Lemma 4 shows that the distance
messages are sent out in non-decreasing order, and hence
at most one message is sent by each vertex for each source.
The next lemma, which can be proved by induction on δ (s,v )
(see [50]) shows that the shortest path counts σsv and the
predecessor lists are also correctly computed.

Lemma 5. During the execution of Algorithm 3, for each
source s from which v is reachable, v sends exactly one mes-
sage (dsv , s,σsv ). This message has dsv = δ (s,v ) and has the
total number of shortest paths from s to v in σsv . Also, when
this message is sent, Ps (v ) contains exactly the predecessors
of v in s’s SP DAG.

3.4 Improving the Round Complexity
We now describe Algorithm 4 which guarantees that Algo-
rithm 3 will terminate in min{2n,n + O (D)} rounds. More
precisely, Alg. 4 terminates the computation before n + 5D
rounds providedG is strongly connected with D < n/5. Other-
wise, the computation terminates necessarily within 2n rounds
because of step 7 of Alg. 3. We now focus on the non-trivial
case where G is strongly connected and D is bounded.

Let B be a BFS tree rooted atv1 (node with smallest ID) and
created in Step 1, Alg. 3. Also, letCv be the set of children of
v in B. Note that, if n is not known, Step 6 of Alg. 3 computes
it in at most 2Du ≤ 2D rounds. Thus, n is always available
during the execution of Alg. 4. The special vertex v1 is used
only to uniquely select a source node for the BFS (as in [38]).
If we omit Alg. 4 (and terminate in 2n rounds), or if the unique
BFS source vertex can be efficiently selected in some other
way, there is no need to identify vertex 1, or to assume that
vertices are numbered from 1 to n.

In Alg. 3 the parent and child pointers in B will be com-
puted in D rounds, and the activity of Alg. 4 for a vertex v
becomes relevant only after n rounds. In the first step, the
algorithm checks if v has received the diameter D from its
parent pv in B. In this case, v broadcasts D to all its chil-
dren in Cv and it stops. Otherwise, the algorithm checks if
v has received one finite distance estimate from every ver-
tex in G (Step 2, Alg. 4). (The flag fv is initialized in Step
3 of Algorithm 3 and is used to ensure that steps 3–9 are
performed only once.) These distances will be correct when
round r ≥ maxs (dsv + ℓ (r )v (dsv , s )) (see Lemma 5), and Algo-
rithm 4 proceeds by distinguishing two cases: if a vertex v is
a leaf in the tree B (Step 3, Alg. 4), it computes the maximum
shortest distance d∗v from any other vertex s and broadcasts
d∗v to its parent pv in B (Step 4, Alg. 4). Then, v will wait up
to round 2n to receive the diameter D from its parent pv in B
(because of the check in step 1, Alg. 4).

In the second case, when v is not a leaf (and not v1), if it
has collected (for the first time) the distances d∗c from all its
children in Cv (Step 6, Alg. 4), it will execute the following
steps only once (thanks to the flag fv initialized to 0 in Alg. 3,
and updated to 1 in Step 8, Alg. 4): v computes the maximum
shortest distance d∗v from any source s (Step 7, Alg. 4) and
the largest distance value d∗Cv received from its children in
Cv (Step 7, Alg. 4). Then v sends the larger of d∗v and d∗Cv to
its parent pv (Step 8, Alg. 4), and it waits for D from pv as in
the first case. Finally, when v is in fact v1, after receiving the
distances from all its children, it broadcasts the diameter D to
its children in Cv1 (Step 9, Alg. 4).

It is readily seen that Algorithm 4 broadcasts the correct
diameter to all vertices inG since after round r = maxs (dsv +
ℓ
(r )
v (dsv , s )) the dsv values at v are the correct shortest path

lengths to v (by Lemma 5). Moreover, since maxs (dsv +
ℓ
(r )
v (dsv , s )) > n when |Lrv | = n, Step 1 of Alg. 3 is completed

and each vertex v knows its parent and its children in B. Thus,

276



PPoPP ’19, February 16–20, 2019, Washington, DC, USA Hoang, Pontecorvi, Dathathri, Gill, You, et al.

Algorithm 4 APSP-Finalizer(v, fv ,pv ,Cv ,n)
▷ pv ,Cv computed in Step 1, Alg. 3
Ensure: Compute and broadcast the network directed diameter D < ∞

1: if v receives diameter D from parent pv in round r < 2n, it broadcasts
D to all vertices in Cv and stops

2: if |Lrv | = n and fv = 0 then
3: if r = maxs (dsv + ℓ

(r )
v (dsv , s )) and Cv = ∅ then ▷ v is a leaf in

the BFS tree B
4: d∗v ← maxs (dsv ); send d∗v to parent pv ; fv ← 1
5: if r ≥ maxs (dsv + ℓ

(r )
v (dsv , s )) then ▷ completed only once

6: if v has received d∗x from all children x ∈ Cv then
7: d∗v ← maxs (dsv ); d∗Cv ← maxx∈Cv (d∗x )
8: if v , v1 then send max(d∗v , d∗Cv ) to parent pv ; fv ← 1
9: else broadcast D = max(d∗v1, d

∗
Cv1

) to Cv1 ; stop

the value sent byv to its parent in Step 8 of Alg. 4 is the largest
shortest path length to any descendant of v in B, including v
itself. Thus, vertex v1 computes the correct diameter of G in
Step 9, Alg. 4.

Lemma 6. The execution of Algorithm 3 requires at most
min{2n,n + 5D} rounds.

Proof. Step 1 of Alg. 3 can be completed in D rounds using
standard techniques, and it is executed in parallel with the
loop in step 7, Alg. 3. If n is not known, Step 6 of Alg. 3
computes it in at most 2Du ≤ 2D rounds. Moreover, when
D = ∞ each vertex stops after 2n rounds because of step 7 of
Alg. 3.

When D is bounded, each v ∈ V will have |Lrv | = n at
some round r . In Alg. 4 (called in Step 10, Alg. 3), using the
parent pointers of the BFS tree B already computed (Step 1,
Alg. 3), the longest shortest path value reaches v1 within D
rounds after the last vertex computes its local maximum value.
At this point v1 computes the diameter D and broadcasts it
to all vertices v in at most D steps. Since maxv maxs {dsv +
ℓ
(r )
v (dsv , s )} ≤ n + D, the total number of rounds is at most
n + 5D (including 2Du ≤ 2D rounds for computing n). The
lemma is proved. □

3.5 Accumulation Technique and BC Computation
Algorithm 5 gives a simple distributed algorithm to implement
the accumulation phase in the Brandes algorithm (Alg. 2). Our
new accumulation technique is a general method that works
for any distributed BC algorithm where each node can keep
track of the round in which step 4 of Algorithm 1 is finalized
for each source. This is the case not only for Algorithm 3 for
both directed and undirected unweighted graphs, but also for
the BC algorithm in [31] for undirected unweighted graphs
(though our Alg. 3 uses a smaller number of rounds).

We now describe our approach. Recall that in Algorithm 3,
in the round when vertex v broadcasts its finalized message
(dsv , s,σsv ) in step 9, it also notes the absolute time of this
round in τsv . Also, by Lemma 6, Alg. 3 completes in round
R = min{n+5D, 2n}. Alg. 5 sets the global clock to 0 in Step 3

Algorithm 5 BC(G )

1: run Algorithm 3 (Directed-APSP(G )) on G ; let R be the termination
round for Alg 3

2: {Recall that τsv is the round when v broadcasts (dsv , σsv ) to Γout (v )
in Step 9, Alg. 3}

3: set absolute time to 0
4: for each vertex v in G do
5: for all s do Asv = R − τsv
6: for a round 0 ≤ r ≤ R do
7: if r = Asv then send m = 1+δs• (v )

σsv to v’s predecessors
8: for a received m from an outgoing neighbor in Γout (v ) do
9: δs• (v ) ← δs• (v ) + σsv ·m

after these R rounds complete in Alg. 3. In Step 5 each vertex
v computes its accumulation round Asv as R − τsv . Then, v
computes δs• (v ) and broadcasts 1+δs• (v )

σsv
to its predecessors

in Ps (v ) in round Asv (Steps 6–9, Alg. 5).

Lemma 7. In Algorithm 5 each vertexv computes the correct
value of δs• (v ) at round Asv = R − τsv , and the only message
it sends in round Asv is m = 1+δs• (v )

σsv
, which it sends to its

predecessors in the SSSP DAG for s.

Proof. We first show that at time Asv , vertex v has received
all accumulation values from its successors in DAG(s ). This
follows from the fact that in the forward phase, each succes-
sor w of v will send its message for source s to vertices in
Γout (w ) in round τsw , which is guaranteed to be strictly greater
than τsv . Thus, since Asw < Asv , vertex v will receive the
accumulation value from every successor in the DAG for s
before time Asv , and hence it computes the correct values
of δs• (v ) and 1+δs• (v )

σsv
. Further, since the timestamps Asv are

different for different sources s, only the message for source
s is sent out by v in round Asv . □

k-SSP Problem. The k-SSP problem takes as input the given
graph G together with a subset S of k vertices, and computes
the shortest path distances and number of shortest paths only
for the sources in S . Experimental results for BC usually
compute shortest paths and δs• only for a small random subset
of sources s, which suffices to obtain a good approximation
of exact BC as shown in [6]. The corresponding shortest path
computation in the forward phase is k-SSP using this random
set of sources.

The computation in Algorithm 3 can terminate at the end
of round r if no node sent a message during round r , and
no node has an entry in Lv such that dsv + Lrv (dsv , s ) > r .
Our experimental set-up on D-Galois can detect this global
termination condition efficiently, without additional overhead.
The following lemma applies to the algorithm used for our
experimental results.

Lemma 8. If the distributed system can detect global ter-
mination, k-SSP can be computed in at most k + H rounds
and m · k messages, where H is the largest finite shortest
path distance from the k sources. The number of rounds and

277



A Round-Efficient Distributed Betweenness Centrality ... PPoPP ’19, February 16–20, 2019, Washington, DC, USA

messages for computing BC using k sources are both at most
double the bound for k-SSP.

The proof of Lemma 8 is readily obtained by modifying
Algorithm 3 so that the initialization in Step 3 occurs only at
the k source nodes (with Lv set to ∅ for all other nodes). We
omit a call to Algorithm 4 since the system can detect global
termination. For the overall BC algorithm the timestamp tech-
nique in Algorithm 5 ensures that it takes at most twice the
number of rounds and messages as the k-SSP computation.

4 D-Galois Implementation
We implemented Min-Rounds BC in D-Galois [16], the state-
of-the-art distributed-memory graph analytics system. A de-
scription of the D-Galois model is given in Section 4.1. We
discuss implementation details of Min-Rounds BC in this
model in Section 4.2. Optimizations for Min-Rounds BC in
the D-Galois model are described in Section 4.3.

4.1 D-Galois Programming and Execution Model
D-Galois is a distributed version of shared-memory Galois [1]
built using the communication substrate Gluon [16]. D-Galois
supports vertex programs: each vertex in the graph has one
or more labels which are initialized at the beginning of the
computation and updated by applying a computation rule
called an operator to the active vertices during the program
execution until a global quiescence condition is reached.

To execute these programs on distributed-memory clusters,
D-Galois uses Gluon-provided graph partitioners to partition
the input graph among the hosts of the cluster. Partitioning
strategies supported in Gluon include general vertex-cuts,
edge-cuts, and Cartesian cuts [16, 27]. Abstractly, these strate-
gies partition the edges of the graph among the hosts using
heuristics and create proxy vertices (proxies for short) on each
host for the endpoints of edges assigned to that host. Since the
edges connected to a given vertex in the original graph may
be partitioned among several hosts, a vertex in the original
graph may have proxies on several hosts.

Distributed execution in D-Galois is performed in Bulk-
Synchronous Parallel (BSP) rounds [58]. Each round consists
of computation followed by communication. During the com-
putation phase, each host operates on its own portion of the
graph independent of other hosts and updates labels on its
proxies. Therefore, if a vertex has proxies on two or more
hosts, the labels of these proxies may have different values
at the end of local computation: they are reconciled during
the communication phase. Generally, in graph analytics ap-
plications, it is sufficient to do an all-reduce on the proxies
of a given node: the labels of all proxies are reduced with an
application-specific reduction operation (user-specified with
the Gluon API), and the labels of all proxies are updated to
this value. During communication, control is passed to Gluon,
which performs reconciliation for the proxies.

Gluon reduces communication volume by using a number
of communication optimizations. Gluon automatically ex-
ploits partitioning constraints to avoid the default all-reduce
operation (e.g., proxies are reconciled for edge-cuts using
only a reduce or a broadcast). Also, users can specify the
vertices whose labels have been updated in the current round
(tracking updates in the operator is trivial) using the Gluon
API, and Gluon avoids resending labels that have not been
updated in the current round while compressing the metadata
that identifies the proxies whose labels are sent.

4.2 Implementation of Min-Rounds BC
The CONGEST model reflects the D-Galois model since each
BSP round is also a CONGEST round, and the sends and re-
ceives at each vertex in a CONGEST round map naturally on
to the vertex programs supported by D-Galois. Consequently,
Min-Rounds BC can be mapped to the D-Galois model in a
straightforward way. Each round in Min-Rounds BC maps to
a BSP round in D-Galois. In the CONGEST model, there is
a host machine for each vertex, and updates are performed
by sending messages between machines along graph edges.
Directed-APSP (Algorithm 3) and BC (Algorithm 5) map
into operators in D-Galois, and the updates between host ma-
chines in the CONGEST model are mapped to a local update
of the proxy label along the proxy’s edges in the operators in
shared-memory: no communication occurs among hosts.

The labels on each proxy v in D-Galois are the fields used
in Algorithms 3 and 5: (1) the sorted list of (distance, source)
pairs (dsv , s ), Lv , (2) shortest path counts from each source,
σsv , and (3) dependency values, δs• (v ). These labels are up-
dated by the computation operators as specified in the Al-
gorithms. They are synchronized by calling the Gluon API
at the beginning of each BSP round before computation in
(1) Algorithm 3: with the reduction for Lv and σsv in lines
12-17 of Algorithm 3 and (2) Algorithm 5: with the addition
for δs• (v ). Gluon transparently handles the communication
required to reconcile the proxy labels.

4.3 Optimizations
Data Structures The CONGEST model does not account
for local computation cost, but Min-Rounds BC in D-Galois
must be efficient in its local computation. We leverage ef-
ficient data structures suited to MRBC’s computations to
improve its runtime. Instead of the labels described in Sec-
tion 4.2, the labels on each proxy are (1) an array Av of size
k where k is the number of sources used and (2) a map Mv .

Av is an unsorted dense array of structures containing dsv ,
σsv , and δs• (v ) for every source s being used. These fields are
grouped into a single structure for spatial locality: when one
of these fields is accessed forv and s, another field will usually
be accessed as well. Access to the structure of a particular
source does not require any search (O (1) access time).

To avoid searching this unsorted array for the dsv , s, and
σsv to be sent in a particular round (Algorithm 3), we maintain

278



PPoPP ’19, February 16–20, 2019, Washington, DC, USA Hoang, Pontecorvi, Dathathri, Gill, You, et al.

a Boost flat map1 Mv , that maps from current distances dsv
to a dense bitvector of size k that indicates which sources
currently have that distance. The map allows iterating through
lexicographically sorted pairs dsv and s (like Lv ). Moreover,
it allows searching a pair in logarithmic time (dense bitvector
access is O (1) time). Additionally, for Algorithm 5, we do
not need to explicitly maintain the round in which a message
in Algorithm 3 is sent: we can derive the round in which the
σsv is ready to be sent using dsv in the map, the current round
number, and the number of already sent dependencies.

Delayed Synchronization In the Gluon API, we can specify
the vertices whose labels have been updated in the current
round so that Gluon avoids sending non-updated data. This
matches the 2 ·m · k bound on the number of messages sent
in the CONGEST model. Nevertheless, a label like dsv of a
vertex could be synchronized even if it is not the final value
since it can be updated several times during the algorithm by
different edges. To avoid this redundancy, we exploit proxies
in D-Galois (unlike in CONGEST) to store updates locally
until they are finalized. With the Gluon API, we specify the
vertices whose labels must be synchronized in this round by
using the properties of Algorithms 3 and 5 that dictate the
round in which a label is finalized. This delayed synchro-
nization reduces the number of messages and communication
volume significantly.

Proxy Synchronization Rule for Min-Rounds BC Let vertex v
have a proxy on host h in D-Galois. In round r of Algorithm 3,
if r = dsv + ℓ

r
v (dsv , s ) (for some source s) on h, then we

synchronize only dsv and σsv with the other proxies of v.
Otherwise, we do not need to synchronize anything for v.

The correctness of this rule is readily established by induc-
tion on round number r . The base case trivially holds at each
source s for dss (for all proxies for s). Assume inductively
that this result holds until round r − 1, and let Algorithm 3
send dsv in Step 9 in round r . This means that v must have
received the correct dsv − 1 value from a predecessor x in a
shortest path from s to v by round r − 1 in Algorithm 3. By
the inductive hypothesis, this means that the correct shortest
path distance dsx would have been synchronized among all
proxies for x . Hence, the host h that contains edge (x ,v ) will
contain the value dsx for source s at the proxy xh , and this
value will have been propagated to vh in a local computation
by round r − 1. The correct dsv value will be ready to be
synchronized with other proxies in round r .

We optimize Algorithm 5 in a similar manner: every proxy
knows exactly when it needs to synchronize its dependency
value, σsv , due to Algorithm 5 dictating the round in which a
dependency value is required to update neighbors.

1We have observed Boost flat map, which uses a sorted vector, to perform
better than the C++ standard map (which uses a red-black tree) even with
O (k ) insertion complexity due to improved locality of a sorted vector.

5 Experimental Evaluation
We evaluate four different BC algorithms. Min-Rounds BC
(MRBC) is the algorithm introduced in this paper. Synchronous-
Brandes BC (SBBC) is the Brandes BC algorithm [13] that
uses level-by-level breadth first search to compute shortest
paths. MRBC and SBBC are implemented in D-Galois [16],
the state-of-the-art distributed-memory graph analytics sys-
tem (source code is publicly available [1]). Asynchronous-
Brandes BC (ABBC) [52] is an asynchronous BC implemen-
tation in the Lonestar benchmark suite [2] which uses shared-
memory Galois [46]. Maximal-Frontier BC (MFBC) [53]
is a sparse-matrix based BC algorithm implemented in Cy-
clops Tensor Framework (CTF) [54]. ABBC is asynchronous
but does not have a distributed-memory implementation2,
whereas the others are bulk-synchronous distributed-memory
implementations. We evaluate all algorithms using only un-
weighted graphs (note that ABBC and MFBC can also handle
weighted graphs).

5.1 Experimental Setup
The experimental platform is the Stampede2 Skylake clus-
ter [55] at the Texas Advanced Computing Center [3]. Each
Skylake host has 48 2.1 GHz cores on 2 sockets (24 cores per
socket) and 192GB RAM. The hosts are connected through
Intel Omni-Path Architecture (peak bandwidth of 100 Gbps).
MFBC uses 1 process per core (48 processes) on each host
while the rest use 1 48-threaded process per host. We use up
to 256 hosts. All code was compiled using gcc/g++ 7.1.0.

We use the unweighted graphs listed in Table 1. livejour-
nal and friendster [40] are social networks; indochina04,
gsh15 [9–11], and clueweb12 [51] are web-crawls; road-
europe [24] is a road network; rmat24 and kron30 are ran-
dom power-law graphs generated in the RMAT [14] and Kro-
necker [39] style, respectively. We classify the input graphs
into small (livejournal, friendster, indochina04, rmat24, and
road-europe) and large (kron30, gsh15, and clueweb12) based
on their size (number of vertices and edges listed in Table 1).
We evaluate all algorithms for the small graphs on 1 and 32
hosts. Since MFBC does not perform well as graphs increase
in size and ABBC is limited to shared-memory, we only show
results for MRBC and SBBC for the large graphs on 64, 128,
and 256 hosts.

The BC of a vertex can be approximated [6] by summing
the betweenness scores of that vertex for randomly sampled
sources. ABBC, SBBC, and MRBC can compute BC using
a random subset of sources. However, due to the limitation
of comparing with MFBC, which only supports a sequence
of contiguous sources as input, our experiments sample a ran-
dom contiguous chunk of sources. Table 1 lists the number of
sources sampled for each graph as well as the maximum finite

2It is not trivial to port ABBC to run on distributed-memory because it is not
a vertex program. Moreover, we expect ABBC to be slower on distributed-
memory as acquiring locks in a distributed setting is costly.

279



A Round-Efficient Distributed Betweenness Centrality ... PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Table 1. Inputs and their properties, rounds, and load imbalance.

livejournal indochina04 rmat24 road-europe friendster kron30 gsh15 clueweb12

|V | 4.8M 7.4M 17M 174M 66M 1,073M 988M 978M
|E | 69M 194M 268M 348M 3,612M 17,091M 33,877M 42,574M
Max Out-degree 20,293 6,985 236,460 15 5,214 3.2M 32,114 7,447
Max In-degree 13,906 256,425 236,386 12 5,214 3.2M 59M 75M
# of Sources 4096 4096 4096 32 4096 4096 2048 256
Estimated Diameter 17 45 9 22541 25 9 103 501

SBBC Rounds 25.0 40.6 6.8 42,345.7 44.2 6.0 127.1 661.0
MRBC Rounds 2.7 3.3 1.4 1,410.8 3.5 1.0 4.4 17.0

SBBC Load Imbalance at Scale 3.33 3.52 1.95 1.29 1.60 1.12 1.46 3.70
MRBC Load Imbalance at Scale 2.25 2.18 1.06 1.30 1.39 1.17 1.74 3.05

kron30 gsh15 clueweb12

32 64 128 32 64 128 32 64 128

8

32

2

4
1

k (Batch size)

T
im

e
 (

s
e

c
) 

o
r 

#
ro

u
n

d
s

Execution Time Rounds MRBC

Figure 1. Execution time and number of rounds of MRBC
for large graphs on 256 hosts with different k (batch sizes).

shortest path distance observed for those sources as the esti-
mated diameter. We consider livejournal, rmat24, friendster,
and kron30 to be low-diameter graphs (estimated diameter ≤
25). Since the sources sampled are the same for all algorithms,
the approximated BC values are the same. We present the
mean execution time of three runs excluding graph loading,
partitioning, and construction time. All results are presented
as an average per source.

5.2 Configuration of different algorithms
We use double-precision floating point values for shortest
path counts (otherwise, the results may be incorrect due to
overflow); we modified MFBC to use double-precision as it
uses single-precision by default. Configuration parameters
of all algorithm implementations were tuned to optimize per-
formance. We configured the chunk-size of the work-list in
ABBC based on the input (64 for road-europe and 8 for the
rest). To partition input graphs across hosts in SBBC and
MRBC, we used the Cartesian vertex-cut [12, 16] partitioning
policy, which performs well at scale [27].

ABBC and SBBC compute the betweenness scores of all
vertices for one source at a time. MRBC and MFBC can
compute the betweenness scores of all vertices for k sources
simultaneously. MFBC performs best when k is the highest

power-of-2 for which the graph fits in memory [53], and we
choose k accordingly for each graph and number of hosts. On
the other hand, it is not clear what k performs best for MRBC.

Figure 1 shows the execution time of MRBC for the large
graphs on 256 hosts with different k , which we call the batch
size. Increasing k is expected to reduce the number of rounds
MRBC takes as parallelism is increased with more source in
a batch; this round reduction is tied to the estimated diame-
ter of the graph (Lemma 8). The speedup in execution time
from batch size 32 to batch size 128 for kron30, gsh15, and
clueweb12 is 1.0×, 1.2×, and 2.2×, respectively. For graphs
with low diameter such as kron30, the reduction in rounds is
minimal, and therefore, increasing batch size does not help as
much and may even worsen performance due to the increased
memory overhead and data structure access time. For graphs
with larger diameter such as gsh15 and clueweb12, increasing
batch size can improve runtime. The tradeoff between increas-
ing parallelism and data structure access time (i.e., finding the
best batch size for a graph) can be explored using a method
such as autotuning; this is not the focus of this work. In the
rest of this paper, we set the batch size k of MRBC to 32 and
64 for small and large graphs, respectively.

5.3 Comparison of different algorithms
Table 2 compares the execution time of all algorithms with the
best-performing number of hosts. Note the execution times
are averaged over the number of sources; therefore, small
differences in per-source execution time can yield large dif-
ferences in the execution time (in the order of hours or days)
depending on the number of sources (corresponds to the ap-
proximation quality [6]). For high-diameter graphs like road-
europe, ABBC substantially outperforms these algorithms
because it is asynchronous whereas the others execute huge
number of bulk-synchronous rounds with very little compu-
tation in each round. For the other graphs, however, ABBC
either is slower than the others due to contention or runs
out-of-memory because it is restricted to a single host. Both
SBBC and MRBC outperform MFBC by significant margins,

280



PPoPP ’19, February 16–20, 2019, Washington, DC, USA Hoang, Pontecorvi, Dathathri, Gill, You, et al.

Table 2. Execution time (sec) using the best-performing number of hosts (#hosts in parenthesis; “-” means out-of-memory).

Algorithm Inputs Algorithm Large Inputs

livejournal indochina04 rmat24 road-europe friendster kron30 gsh15 clueweb12

ABBC 0.41 (1) - 21.72 (1) 5.16 (1) - SBBC 0.42 (256) 2.04 (256) 13.26 (256)
MFBC 0.10 (32) 0.29 (32) 0.20 (32) - 4.41 (32)

SBBC 0.09 (1) 0.08 (1) 0.06 (32) 320.46 (32) 1.16 (32) MRBC 0.82 (256) 1.21 (256) 5.18 (256)
MRBC 0.09 (32) 0.03 (32) 0.07 (32) 62.37 (32) 1.71 (32)

0.44

GB

0.37

GB

0.03

GB 0.01

GB

0.47

GB
0.39

GB

5.29

GB 4.02

GB
9.56

GB 8.11

GB

livejournal indochina04 rmat24 road-europe friendster

SBBC

M
R
BC

SBBC

M
R
BC

SBBC

M
R
BC

SBBC

M
R
BC

SBBC

M
R
BC

0.0

0.5

1.0

1.5

0

100

200

300

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.00

0.05

0.10

0.15

T
im

e
 (

s
e

c
)

Computation Non-overlapped Communication

(a) Small graphs on 32 hosts.

35.3

GB

29.8

GB

29.9

GB

15.2

GB

25.9

GB

12.8

GB

kron30 gsh15 clueweb12

SBBC

M
R
BC

SBBC

M
R
BC

SBBC

M
R
BC

0

5

10

0.0

0.5

1.0

1.5

2.0

0.0

0.2

0.4

0.6

0.8

T
im

e
 (

s
e

c
)

Computation Non-overlapped Communication

(b) Large graphs on 256 hosts.

Figure 2. Breakdown of execution time and communication volume (on each bar).

kron30 gsh15 clueweb12

64 128 256 64 128 256 64 128 256

8

16

0.5

1.0

2.0

0.25

1.00

Hosts

T
im

e
 (

s
e

c
)

Execution Computation SBBC MRBC

Figure 3. Strong scaling of execution time for large graphs.

which could be due to both algorithmic and implementation
differences. MRBC is 3.0× faster than MFBC on average.

In the rest of this section, we focus on differences between
SBBC and MRBC. Since SBBC and MRBC are implemented
in the same system, performance differences between them
are due to the algorithm. Table 2 shows that SBBC is faster
for low-diameter graphs (estimated diameter ≤ 25 in Table 1)
while MRBC is faster for the other graphs. Real world web-
crawls like gsh15 and clueweb12 have non-trivial diameters
(due to long tails), and we see that MRBC is 1.7× and 2.6×
faster than SBBC for gsh15 and clueweb12, respectively. The
larger the diameter, the better MRBC is.

Bulk-synchronous rounds The advantages of MRBC come
mainly from the reduction in the number of rounds compared

to SBBC. Table 1 shows the number of rounds executed in
SBBC and MRBC for all inputs. MRBC reduces the number
of rounds executed over SBBC by 14.0× on average.

Computation time We measure compute time on each host
and denote the maximum across hosts as the computation
time and the rest of the execution time as non-overlapped
communication (and synchronization) time. Figure 2 shows
the breakdown of execution time of SBBC and MRBC at
scale into computation/communication time. For all inputs,
the computation time of MRBC is higher than that of SBBC
due to the overheads of maintaining additional data structures.

Communication time The non-overlapped communication
time in Figure 2 includes waiting time at BSP barriers and data
structure access time to (de)serialize messages. As MRBC
maintains more complex data structures than SBBC does,
access time and locality of MRBC can be worse. For in-
stance, for kron30 at 256 hosts, (de)serialize time accounts
for over ∼ 50% of communication time for MRBC, and
(de)serialization for kron30 is ∼ 3.6× slower for MRBC
than it is for SBBC. However, due to reduction in rounds,
MRBC can reduce the wait time at barriers and the total com-
munication volume across hosts (shown in Figure 2). The
total number of proxies synchronized in SBBC and MRBC
across all rounds are similar. The message size in MRBC is
more because it identifies the source corresponding to the
message (SBBC does not because it does one source at a
time). However, Gluon [16] aggregates the messages of all
proxies at the end of each round, compresses the metadata

281



A Round-Efficient Distributed Betweenness Centrality ... PPoPP ’19, February 16–20, 2019, Washington, DC, USA

that identifies the proxies, and exchanges one communication
message between each pair of hosts. Therefore, the number
of messages in MRBC is fewer than that of SBBC. MRBC
synchronizes the same number of proxies in fewer rounds
than SBBC; more proxies are synchronized in each round in
MRBC, which leads to more compression of metadata and
lower communication volume. Due to this, MRBC reduces the
communication time compared to SBBC by 2.8× on average.

While MRBC reduces rounds for low-diameter graphs,
the number of rounds executed in SBBC for these graphs
is small enough that the rounds reduction may not yield net
improvement due to increased computation time. For graphs
with non-trivial diameter, the communication time reduction
by MRBC outweighs its computation time overhead, yielding
faster execution time than SBBC.

Load balance Load imbalance also affects performance in
SBBC and MRBC. Graphs are irregular data structures, and
nodes becomes active dynamically in each round, so it is dif-
ficult to statically partition the graph to obtain dynamic load
balance. Table 1 shows estimates of load imbalance (the ratio
of maximum computation time and mean computation time
across hosts averaged across rounds). Reducing the number
of rounds reduces the impact of load imbalance on the overall
execution time as it decreases the wait time at synchroniza-
tion barriers: this generally favors MRBC over SBBC since
MRBC has fewer rounds. In graphs with low load imbalance
(e.g., rmat24 or kron30), this effect may not be as pronounced.

Strong scaling For livejournal, indochina04, rmat24, and
friendster, the speedups on 32 hosts over 1 host for MRBC are
3.1×, 6.3×, 7.8×, and 12.6×, respectively, while for SBBC,
they are 0.6×, 0.6×, 2.6×, and 5.0×, respectively (perfor-
mance for livejournal and indochina04 degrades due to com-
munication overhead). Figure 3 shows the scaling of SBBC
and MRBC from 64 to 256 hosts on the large graphs. MRBC
scales better than SBBC as the benefits of reducing rounds
grows with increase in the number of hosts: for these graphs,
the mean self-relative speedup of MRBC and SBBC on 256
hosts over that on 64 hosts is 2.7× and 1.5×, respectively.
Thus, for graphs with non-trivial diameter, MRBC not only
runs faster but also scales better than SBBC.

6 Related Work
For unweighted undirected graphs, the first O (n)-round CON-
GEST APSP algorithms were given in [29, 48]. The constant
factor in the number of rounds was improved to n +O (Du )
in [38]. Lower bounds of Ω(n/ logn) for computing diameter
and APSP were given in [23, 32].

For unweighted directed graphs, we do not know of pub-
lished results that claim to compute exact APSP in O (n)
rounds. But as noted in Section 3.1, the 2n-round version of
APSP algorithm claimed for undirected graphs in [38] in fact
works for directed graphs.

For Betweenness Centrality, an O (n)-round CONGEST al-
gorithm for undirected unweighted graphs was given in [31],
along with an Ω( n

logn +Du )-round lower bound and a method
to approximate an exponential number of shortest paths with
log-size messages. An approximation algorithm for comput-
ing random walk BC in O (n logn) rounds in the CONGEST
model was recently given in [30]. Distributed BC algorithms
from a practical prospective are given in [59, 60]. No O (n)-
round BC algorithm was known for directed graphs prior to
our algorithm.

Most distributed-memory implementations [8, 16, 19, 20,
61] of BC are based on Brandes’s algorithm [13]; many
of these implementations do level-by-level traversals of the
graph to efficiently calculate dependency values. Maximal-
Frontier BC [53] is formulated using communication-efficient
matrix operations. Min-Rounds BC outperforms these algo-
rithms for many graphs in our evaluation. BC has also been
implemented for shared-memory processors [7, 28, 43, 56,
57]. Dhulipala et al. [18] use a compressed data format for
very large graphs to run the Brandes BC algorithm [13] on
a shared-memory multicore machine with 1 TB of memory.
Asynchronous-Brandes BC [52] is an asynchronous algorithm
for BC that performs well on high-diameter graphs. Our re-
sults show that it outperforms all other BC algorithms on such
graphs, but it does not perform as well on power-law graphs.

BC algorithms exist for the external memory setting where
the graph is not fully loaded into memory [5] and for the
streaming setting where the graph changes in structure over
time [35]. These works are orthogonal to the distributed mem-
ory setting that Min-Rounds BC is designed for.

7 Conclusion
We presented Min-Rounds BC, a round- and message-efficient
distributed algorithm in the CONGEST model for computing
BC in an unweighted directed graph. Our algorithm trans-
lates into a highly efficient BC algorithm on the D-Galois
distributed-memory graph analytics system and runs in at
most 2 · (k + D) rounds where k is the number of sources
in a batch and D is the directed diameter. Experiments on a
large production cluster show that MRBC is faster than other
BC algorithms for non-trivial diameter graphs even though
it may perform more computation than other algorithms. For
real-world web-crawls on 256 hosts, MRBC is 2.1× faster
than Brandes BC on average in our experiments.

Acknowledgments
This research was supported by NSF CCF grants 1320675,
1337217, 1337281, 1406355, 1618425, and 1725322 and
by DARPA contracts FA8750-16-2-0004 and FA8650-15-C-
7563. This work used XSEDE grant ACI-1548562 through
allocation TG-CIE170005. We used the Stampede2 system at
Texas Advanced Computing Center.

282



PPoPP ’19, February 16–20, 2019, Washington, DC, USA Hoang, Pontecorvi, Dathathri, Gill, You, et al.

References
[1] [n. d.]. Galois System. http://iss.ices.utexas.edu/?p=projects/

galois.
[2] 2018. The Lonestar Benchmark Suite. http://iss.ices.utexas.edu/

?p=projects/galois/lonestar
[3] 2018. Texas Advanced Computing Center (TACC), The University of

Texas at Austin. https://www.tacc.utexas.edu/
[4] U. Agarwal and V. Ramachandran. 2019. Distributed weighted all pairs

shortest paths through pipelining. In Proceedings of the 33rd IEEE
International Parallel and Distributed Processing (IPDPS ’19). To
appear.

[5] L. Arge, M. T. Goodrich, and F. van Walderveen. 2013. Computing
betweenness centrality in external memory. In 2013 IEEE International
Conference on Big Data. 368–375. https://doi.org/10.1109/BigData.
2013.6691597

[6] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail.
2007. Approximating Betweenness Centrality. In Proceedings of the 5th
International Workshop on Algorithms and Models for the Web-Graph
(WAW ’07). 124–137.

[7] D. A. Bader and K. Madduri. 2006. Parallel Algorithms for Eval-
uating Centrality Indices in Real-world Networks. In 2006 Interna-
tional Conference on Parallel Processing (ICPP’06). 539–550. https:
//doi.org/10.1109/ICPP.2006.57

[8] Massimo Bernaschi, Giancarlo Carbone, and Flavio Vella. 2016. Scal-
able Betweenness Centrality on multi-GPU Systems. In Proceedings
of the ACM International Conference on Computing Frontiers (CF

’16). ACM, New York, NY, USA, 29–36. https://doi.org/10.1145/
2903150.2903153

[9] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna.
2014. BUbiNG: Massive Crawling for the Masses. In Proceedings
of the 23rd International Conference on World Wide Web (WWW ’14
Companion). ACM, New York, NY, USA, 227–228. https://doi.org/
10.1145/2567948.2577304

[10] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna.
2011. Layered Label Propagation: A Multiresolution Coordinate-free
Ordering for Compressing Social Networks. In Proceedings of the
20th International Conference on World Wide Web (WWW ’11). ACM,
New York, NY, USA, 587–596. https://doi.org/10.1145/1963405.
1963488

[11] P. Boldi and S. Vigna. 2004. The Webgraph Framework I: Compression
Techniques. In Proceedings of the 13th International Conference on
World Wide Web (WWW ’04). ACM, New York, NY, USA, 595–602.
https://doi.org/10.1145/988672.988752

[12] E. G. Boman, K. D. Devine, and S. Rajamanickam. 2013. Scal-
able matrix computations on large scale-free graphs using 2D graph
partitioning. In 2013 SC - International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC). 1–12.
https://doi.org/10.1145/2503210.2503293

[13] U. Brandes. 2001. A Faster Algorithm for Betweenness Centrality.
Journal of Mathematical Sociology 25 (2001).

[14] Deepayan Chakrabarti, Yiping Zhan, and Christos Falout-
sos. [n. d.]. R-MAT: A Recursive Model for Graph Mining.
442–446. https://doi.org/10.1137/1.9781611972740.43
arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.43

[15] T. Coffman, S. Greenblatt, and S. Marcus. 2004. Graph-based tech-
nologies for intelligence analysis. Commun. ACM 47 (2004). Issue
3.

[16] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex
Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon:
A Communication-optimizing Substrate for Distributed Heterogeneous
Graph Analytics. In Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI

’18). ACM, New York, NY, USA, 752–768. https://doi.org/10.1145/
3192366.3192404

[17] A. Del Sol, H. Fujihashi, and P. O’Meara. 2005. Topology of small-
world networks of protein–protein complex structures. Bioinformatics
(2005).

[18] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoreti-
cally Efficient Parallel Graph Algorithms Can Be Fast and Scalable. In
Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures (SPAA ’18). ACM, New York, NY, USA, 393–404.
https://doi.org/10.1145/3210377.3210414

[19] Nicoletta Di Blas and Bianca Boretti. 2009. Interactive Storytelling in
Pre-school: A Case-study. (2009), 44–51. https://doi.org/10.1145/
1551788.1551797

[20] N. Edmonds, T. Hoefler, and A. Lumsdaine. 2010. A space-efficient
parallel algorithm for computing betweenness centrality in distributed
memory. In HiPC.

[21] Michael Elkin. 2006. An unconditional lower bound on the time-
approximation trade-off for the distributed minimum spanning tree
problem. SIAM J. Comput. 36, 2 (2006), 433–456.

[22] L. C. Freeman. 1977. A set of measures of centrality based on between-
ness. (1977).

[23] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. 2012. Net-
works Cannot Compute Their Diameter in Sublinear Time. In Proceed-
ings of the Twenty-third Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’12). Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA, 1150–1162. http://dl.acm.org/citation.
cfm?id=2095116.2095207

[24] Karlsruher Institut fur Technologie. 2014. OSM-Europe. https:
//i11www.iti.kit.edu/resources/roadgraphs.php

[25] Juan A. Garay, Shay Kutten, and David Peleg. 1998. A SubLinear Time
Distributed Algorithm for Minimum-Weight Spanning Trees. SIAM J.
Comput. 27, 1 (Feb. 1998), 302–316.

[26] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and
Keshav Pingali. 2018. Abelian: A Compiler for Graph Analytics on
Distributed, Heterogeneous Platforms. In Euro-Par 2018: Parallel Pro-
cessing, Marco Aldinucci, Luca Padovani, and Massimo Torquati (Eds.).
Springer International Publishing, Cham, 249–264.

[27] Gurbinder Gill, Roshan Dathathri, Loc Hoang, and Keshav Pingali.
2018. A Study of Partitioning Policies for Graph Analytics on Large-
scale Distributed Platforms (PVLDB), Vol. 12. https://doi.org/10.
14778/3297753.3297754

[28] Oded Green and David A. Bader. 2013. Faster Betweenness Centrality
Based on Data Structure Experimentation. Procedia Computer Science
18 (2013), 399 – 408. https://doi.org/10.1016/j.procs.2013.05.203
2013 International Conference on Computational Science.

[29] Stephan Holzer and Roger Wattenhofer. 2012. Optimal Distributed All
Pairs Shortest Paths and Applications. In Proceedings of the 2012 ACM
Symposium on Principles of Distributed Computing (PODC ’12). ACM,
New York, NY, USA, 355–364. https://doi.org/10.1145/2332432.
2332504

[30] Q. S. Hua, M. Ai, H. Jin, D. Yu, and X. Shi. 2017. Distributively
Computing Random Walk Betweenness Centrality in Linear Time. In
2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). 764–774.

[31] Q. S. Hua, H. Fan, M. Ai, L. Qian, Y. Li, X. Shi, and H. Jin. 2016.
Nearly Optimal Distributed Algorithm for Computing Betweenness
Centrality. In 36th ICDCS. 271–280.

[32] Qiang-Sheng Hua, Haoqiang Fan, Lixiang Qian, Ming Ai, Yangyang
Li, Xuanhua Shi, and Hai Jin. 2016. Brief Announcement: A Tight
Distributed Algorithm for All Pairs Shortest Paths and Applications. In
SPAA ’16. 439–441.

[33] H. Jeong, S. P. Mason, A. L. Barabási, and Z. N. Oltvai. 2001. Lethality
and centrality in protein networks. Nature 411 (May 2001). http:
//dx.doi.org/10.1038/35075138

[34] S. Jin, Z. Huang, Y. Chen, D. G. Chavarría-Miranda, J. Feo, and P. C.
Wong. 2010. A novel application of parallel betweenness centrality to

283

http://iss.ices.utexas.edu/?p=projects/galois
http://iss.ices.utexas.edu/?p=projects/galois
http://iss.ices.utexas.edu/?p=projects/galois/lonestar
http://iss.ices.utexas.edu/?p=projects/galois/lonestar
https://www.tacc.utexas.edu/
https://doi.org/10.1109/BigData.2013.6691597
https://doi.org/10.1109/BigData.2013.6691597
https://doi.org/10.1109/ICPP.2006.57
https://doi.org/10.1109/ICPP.2006.57
https://doi.org/10.1145/2903150.2903153
https://doi.org/10.1145/2903150.2903153
https://doi.org/10.1145/2567948.2577304
https://doi.org/10.1145/2567948.2577304
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/2503210.2503293
https://doi.org/10.1137/1.9781611972740.43
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.43
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3210377.3210414
https://doi.org/10.1145/1551788.1551797
https://doi.org/10.1145/1551788.1551797
http://dl.acm.org/citation.cfm?id=2095116.2095207
http://dl.acm.org/citation.cfm?id=2095116.2095207
https://i11www.iti.kit.edu/resources/roadgraphs.php
https://i11www.iti.kit.edu/resources/roadgraphs.php
https://doi.org/10.14778/3297753.3297754
https://doi.org/10.14778/3297753.3297754
https://doi.org/10.1016/j.procs.2013.05.203
https://doi.org/10.1145/2332432.2332504
https://doi.org/10.1145/2332432.2332504
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138


A Round-Efficient Distributed Betweenness Centrality ... PPoPP ’19, February 16–20, 2019, Washington, DC, USA

power grid contingency analysis. In IPDPS.
[35] N. Kourtellis, G. De Francisci Morales, and F. Bonchi. 2016. Scalable

online betweenness centrality in evolving graphs. In 2016 IEEE 32nd
International Conference on Data Engineering (ICDE). 1580–1581.
https://doi.org/10.1109/ICDE.2016.7498421

[36] V. Krebs. 2002. Mapping Networks of Terrorist Cells. Connections
(2002).

[37] Christoph Lenzen and Boaz Patt-Shamir. 2013. Fast Routing Table
Construction Using Small Messages: Extended Abstract. In Proceed-
ings of the Forty-fifth Annual ACM Symposium on Theory of Com-
puting (STOC ’13). ACM, New York, NY, USA, 381–390. https:
//doi.org/10.1145/2488608.2488656

[38] Christoph Lenzen and David Peleg. 2013. Efficient Distributed Source
Detection with Limited Bandwidth. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing (PODC ’13). ACM,
New York, NY, USA, 375–382. https://doi.org/10.1145/2484239.
2484262

[39] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Falout-
sos, and Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to
Modeling Networks. J. Mach. Learn. Res. 11 (March 2010), 985–1042.
http://dl.acm.org/citation.cfm?id=1756006.1756039

[40] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.

[41] F. Liljeros, C.R. Edling, L. Amaral, H.E. Stanley, and Y. Åberg. 2001.
The web of human sexual contacts. Nature 411 (2001). https://doi.
org/10.1038/35082140

[42] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[43] Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader, and
Daniel G. Chavarría-Miranda. 2009. A faster parallel algorithm and
efficient multithreaded implementations for evaluating betweenness
centrality on massive datasets. In IPDPS. IEEE, 1–8.

[44] Fragkiskos D. Malliaros and Michalis Vazirgiannis. 2013. Clustering
and community detection in directed networks: A survey. Physics
Reports 533, 4 (2013), 95 – 142.

[45] Danupon Nanongkai. 2014. Distributed Approximation Algorithms for
Weighted Shortest Paths. In Proceedings of the Forty-sixth Annual ACM
Symposium on Theory of Computing (STOC ’14). ACM, New York,
NY, USA, 565–573. https://doi.org/10.1145/2591796.2591850

[46] Donald Nguyen and Keshav Pingali. 2011. Synthesizing concurrent
schedulers for irregular algorithms. In Proc. Intl Conf. Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’11). 333–344. https://doi.org/10.1145/1950365.1950404

[47] David Peleg. 2000. Distributed Computing: A Locality-sensitive Ap-
proach. SIAM, Philadelphia, PA, USA.

[48] David Peleg, Liam Roditty, and Elad Tal. 2012. Distributed Algorithms
for Network Diameter and Girth. In ICALP’12. 660–672.

[49] David Peleg and Vitaly Rubinovich. 2000. A Near-Tight Lower Bound
on the Time Complexity of Distributed Minimum-Weight Spanning
Tree Construction. SIAM J. Comput. 30, 5 (May 2000), 1427–1442.

[50] Matteo Pontecorvi and Vijaya Ramachandran. 2018. Distributed Al-
gorithms for Directed Betweenness Centrality and All Pairs Shortest
Paths. (2018). http://arxiv.org/abs/1805.08124

[51] The Lemur Project. 2013. The ClueWeb12 Dataset. http://
lemurproject.org/clueweb12/

[52] Dimitrios Prountzos and Keshav Pingali. 2013. Betweenness Cen-
trality: Algorithms and Implementations. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP ’13). ACM, New York, NY, USA, 35–46.
https://doi.org/10.1145/2442516.2442521

[53] Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler.
2017. Scaling Betweenness Centrality Using Communication-efficient
Sparse Matrix Multiplication. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and

Analysis (SC ’17). ACM, New York, NY, USA, Article 47, 14 pages.
https://doi.org/10.1145/3126908.3126971

[54] Edgar Solomonik, Devin Matthews, Jeff Hammond, and James Demmel.
2013. Cyclops Tensor Framework: Reducing Communication and Elim-
inating Load Imbalance in Massively Parallel Contractions. In Proceed-
ings of the 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing (IPDPS ’13). IEEE Computer Society, Washing-
ton, DC, USA, 813–824. https://doi.org/10.1109/IPDPS.2013.112

[55] Dan Stanzione, Bill Barth, Niall Gaffney, Kelly Gaither, Chris Hempel,
Tommy Minyard, S. Mehringer, Eric Wernert, H. Tufo, D. Panda, and P.
Teller. 2017. Stampede 2: The Evolution of an XSEDE Supercomputer.
In Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact (PEARC17).
ACM, New York, NY, USA, Article 15, 8 pages. https://doi.org/10.
1145/3093338.3093385

[56] G. Tan, V. C. Sreedhar, and G. R. Gao. 2011. Analysis and performance
results of computing betweenness centrality on IBM Cyclops64. J.
Supercomput. 56 (2011). Issue 1.

[57] Guangming Tan, Dengbiao Tu, and Ninghui Sun. 2009. A Parallel
Algorithm for Computing Betweenness Centrality. In Proceedings of
the 2009 International Conference on Parallel Processing (ICPP ’09).
IEEE Computer Society, Washington, DC, USA, 340–347. https:
//doi.org/10.1109/ICPP.2009.53

[58] Leslie G. Valiant. 1990. A bridging model for parallel computation.
Commun. ACM 33, 8 (1990), 103–111. https://doi.org/10.1145/
79173.79181

[59] W. Wang and C. Y. Tang. 2013. Distributed computation of node and
edge betweenness on tree graphs. In 52nd Conf. on Decis. and Contr.
43–48.

[60] K. You, R. Tempo, and L. Qiu. 2017. Distributed Algorithms for
Computation of Centrality Measures in Complex Networks. Trans. on
Autom. Contr. 62, 5 (2017), 2080–2094.

[61] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-centric Distributed Graph Processing
System. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI’16). USENIX Association,
Berkeley, CA, USA, 301–316. http://dl.acm.org/citation.cfm?id=
3026877.3026901

284

https://doi.org/10.1109/ICDE.2016.7498421
https://doi.org/10.1145/2488608.2488656
https://doi.org/10.1145/2488608.2488656
https://doi.org/10.1145/2484239.2484262
https://doi.org/10.1145/2484239.2484262
http://dl.acm.org/citation.cfm?id=1756006.1756039
http://snap.stanford.edu/data
https://doi.org/10.1038/35082140
https://doi.org/10.1038/35082140
https://doi.org/10.1145/2591796.2591850
https://doi.org/10.1145/1950365.1950404
http://arxiv.org/abs/1805.08124
http://lemurproject.org/clueweb12/
http://lemurproject.org/clueweb12/
https://doi.org/10.1145/2442516.2442521
https://doi.org/10.1145/3126908.3126971
https://doi.org/10.1109/IPDPS.2013.112
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1109/ICPP.2009.53
https://doi.org/10.1109/ICPP.2009.53
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
http://dl.acm.org/citation.cfm?id=3026877.3026901
http://dl.acm.org/citation.cfm?id=3026877.3026901


PPoPP ’19, February 16–20, 2019, Washington, DC, USA Hoang, Pontecorvi, Dathathri, Gill, You, et al.

A Artifact Appendix
A.1 Abstract
We provide source code to SBBC and MRBC in this paper
and scripts to run experiments from the paper. This artifact
must be run on the Stampede2 supercomputer. This artifact
supports the paper by making it possible to replicate the
figures and numbers in this paper, and it can be validated by
comparing the figures and results that this artifact’s scripts
generate with the data from the paper. We also provide CSVs
that can be used to generated the exact figures in this paper.

Users can reproduce the figures in this paper and the num-
bers of SBBC and MRBC in Table 2, except those on 1 host.

A.2 Artifact check-list (meta-information)
• Algorithm: Min Rounds Betweenness Centrality, Synchro-

nous Brandes Betweenness Centrality
• Compilation: cmake, g++ 7.1.0, boost 1.64
• Data set: Public web crawls, randomly generated power-law

graphs
• Hardware: Stampede2 supercomputer
• Execution: Scheduling on Stampede2’s job queue
• Metrics: Execution time, communication volume, break-

down of computation/communication time
• Output: Figures and CSV files (with runtime statistics)
• Experiments: Use provided scripts in the artifact to build,

schedule jobs, and generate figures
• How much time is needed to prepare workflow (approxi-

mately)?: Assuming access to Stampede2, 10 minutes
• How much time is needed to complete experiments (ap-

proximately)?: Roughly a week
• Publicly available?: Yes [1]

A.3 Description
A.3.1 How delivered
Via Zenodo: https://doi.org/10.5281/zenodo.2399798

A.3.2 Hardware dependencies
This artifact uses the Stampede2 supercomputer.

A.3.3 Software dependencies
The R software environment is required to generate CSVs and graphs.
We provide usable R executables on Stampede2 that our scripts use.
All other dependencies are handled by our scripts assuming you are
running on Stampede2.

A.3.4 Data sets
The data sets are made available on Stampede2. They are too large
(roughly 1.5 TB total) to package with the artifact.

A.4 Installation
These instructions assume that you have Stampede2 access.

Once the artifact is downloaded, move it onto Stampede2 into
your personal $WORK directory. This can be accessed using the
command cd $WORK. Extract the artifact using tar -xf. The
building of the executables will be handled by the same script that
runs the experiments described in the below sections.

Before running any experiments, to set up notifications for when
the scheduled experiments start and end, change the following line
located in the following files in the execute_scripts directory:
test_rmat15_lvl.sbatch
test_rmat15_mr.sbatch
skx_run_stampede.template.sbatch

#SBATCH --mail-user=<insert email here>

Additionally, in the same files above, change the following line
to whatever allocation you are using on Stampede2:
#SBATCH -A Galois

Replace “Galois” with your Stampede2 allocation name.

A.5 Experiment workflow
To run experiments, users run provided scripts that will compile our
code and schedule runs of the executable on Stampede2 via sbatch.
To run jobs on Stampede2, one must put them on a queue and
wait until they are scheduled (our scripts handle this automatically).
Once these experiments finish, the statistics collected by the Galois
runtime will be output. We provide scripts that will compile these
results into CSVs using R, and from these CSVs, we have included
scripts that will use R to create the figures that we used in the paper.
Details are located in Section A.6.

The experimental scripts can be modified to test different run-
time parameters by changing the Stampede2 scheduling scripts in
the execute_scripts directory; details are described in Sec-
tion A.7.

If a user does not have Stampede2 access, if they have R in-
stalled on their local machine, the artifact includes CSVs that can be
used to generate the exact figures used in this paper. Details are in
Section A.8.

A.6 Evaluation and expected result
We provide two executables for reviewers to evaluate: bc_level
(SBBC) and bc_mr (MRBC). The source code for both can be found
in GaloisCpp/dist_apps in the artifact directory.

Users are expected to reproduce the results in this paper, specif-
ically generating all figures in the paper and and similar average
execution times per source (Table 2). There may be slight variation
of roughly 5-10% (possibly more when the runtime numbers are in
the millisecond scale) from the numbers reported in the paper.

There are 3 types of scripts that you must run: run scripts, compile
scripts, and plot scripts. For the run and compile scripts, there
are 7 different kinds: small, large64, large128, large256
(lvl and mr), b32, and b128. The run scripts will compile and
schedule the runs on the Stampede2 queue, and the compile scripts
will compile the corresponding statistics from the run (only once
they finish) into CSVs for easier inspection. These correspond to 7
different groups of experiments. Descriptions of what each group of
scripts is below:

small Runs the SBBC/MRBC experiments for the smaller graphs
in the paper.

large64 Runs the SBBC/MRBC experiments for kron30, gsh15,
clueweb12 at 64 nodes.

large128 Runs the SBBC/MRBC experiments for kron30, gsh15,
clueweb12 at 128 nodes.

285

https://doi.org/10.5281/zenodo.2399798


A Round-Efficient Distributed Betweenness Centrality ... PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Note that for the 3 groups below, only THREE jobs may be on
queue at once due to the use of 256 nodes. Each script will schedule
3 jobs, so you will not be able to run these in parallel.

large256(mr, lvl) Runs the SBBC/MRBC experiments for kron30,
gsh15, clueweb12 at 256 nodes.

b32 Runs the MRBC experiments for kron30, gsh15, clueweb12
at 256 nodes with a batch size of 32.

b128 Runs the MRBC experiments for kron30, gsh15, clueweb12
at 256 nodes with a batch size of 128.

Workflow will be as follows:

./run_small_experiments.sh
<wait for scheduled experiments to finish>
./compile_small_experiments.sh
./run_large256_experiments.sh
<wait for scheduled experiments to finish>
./compile_large256_experiments.sh
.... and so on, for the 5 remaining groups.
./plot_fig1.sh
.... and so on for remaining figures

There are 4 types of output reviewers can inspect once all scripts
for an experiment group and appropriate plot scripts have been run.

The first is raw Galois runtime output to be found in skx_outputs.
These contain output from the executables printed during runtime:
most notably, each output file has sanity check output used to verify
correctness across runs (e.g. the maximum betweenness centrality
value among all nodes, the sum of all centrality values, etc.).

The second is Galois statistics output found in skx_results.
which detail statistics collected during runtime such as execution
time, graph construction time, communication time, etc. Notably,
Timer_0 in these files contain the execution time of the programs.

The third is CSVs generated by R from the Galois statistics. This
contains summarized statistics derived from the Galois file such as
total communication volume in an easier to process format. Notably,
it will contain the average time per source in the final column: this
can be used to compare some results with Table 2. Each compile
script will add to a particular CSV file, as listed below:

bc_results_small.csv small_results

bc_results_large.csv large64_results,
large128_results, large256_results

bc_results_b32.csv b32_results

bc_results_b128.csv b128_results

The last is the figures to be found in figs directory. These
correspond to all the figures in the paper once all plot scripts have
been run. Dependencies for each figure are listed below:

Figure 1 run and compile for large256, b32, and b128
should be completed successfully.

Figure 2a run and compile for small_experiments should
be completed successfully.

Figure 2b run and compile for large256 should be com-
pleted successfully.

Figure 3 run and compile for large64, large128, and
large256 should be completed successfully.

In the event of job failure (e.g., runtime crash), it is possible to
schedule specific jobs and algorithms again by changing the top-level
run scripts and the execute scripts: see Section A.7 for details.

A.7 Experiment customization
The top-level run scripts call into individual scripts in
execute_scripts: you can change which individual scripts are
called by commenting them out.

Users may experiment with a number of runtime settings by alter-
ing the files located in execute_scripts under the clueweb,
gsh, kron, and small directories.

Algorithms to Run You can specify which algorithms to run (bc_level,
bc_mr, or both) by changing the strings in EXECS.

Number of Hosts/Time Limit You can change the number of hosts
to run the distributed algorithms on by changing the number before
the comma in the SET variable. For example, 32,03:00:00 means to
run on 32 hosts for a maximum time of 3 hours. Multiple jobs can
be scheduled by specifying many host/time pairs in SET (see the
scripts for examples).

Number of Sources You can change the number of sources to
calculate betweenness centrality for by changing the number in the
NUMSOURCES variable. As our scripts choose the sources to run
from a text file, it is not possible to change the number of sources in
a script to greater than the number that the script has by default.

Batch Size for MRBC Batch size can be changed for MRBC by
changing the number in the BATCHSIZE variable.

Threads You can change the number of threads used on each host
by changing the threads variable in
skx_run_stampede_all.sh. (Default is the maximum num-
ber of threads on Skylake without hyperthreading.)

A.8 Notes
The directory ppopp2019csv contains CSVs that can be used to
generate the same figures found in the paper. Simply copy the CSVs
to the same directory as the plot scripts, and the plot scripts will
be able to detect them. If NOT running on Stampede2, make sure to
go into the plot scripts and change the path to Rscript to the one
on your system (it is hardcoded to use a public installation on Stam-
pede2). You may also need to install the R packages dependencies,
which include the following:
ggplot2, gtable, grid, gridExtra, plyr,
reshape2

We provide test scripts prefixed with test in the top-level direc-
tory that will run a very small job and output results.

We have seen non-deterministic failure of scheduled jobs periodi-
cally: this is usually resolved by rescheduling the job.

A.9 Methodology
Submission, reviewing and badging methodology:

http://cTuning.org/ae/submission-20180713.html
http://cTuning.org/ae/reviewing-20180713.html
https://www.acm.org/publications/policies/artifact-review-badging

286

http://cTuning.org/ae/submission-20180713.html
http://cTuning.org/ae/reviewing-20180713.html
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background
	2.1 Brandes' Betweenness Centrality Algorithm
	2.2 CONGEST Model

	3 Min-Rounds BC
	3.1 Our Contributions
	3.2 The Lenzen-Peleg APSP Algorithm Lenzen13
	3.3 APSP and Number of Shortest Paths
	3.4 Improving the Round Complexity
	3.5 Accumulation Technique and BC Computation

	4 D-Galois Implementation
	4.1 D-Galois Programming and Execution Model
	4.2 Implementation of Min-Rounds BC 
	4.3 Optimizations

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Configuration of different algorithms
	5.3 Comparison of different algorithms

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology




